

кормовые добавки:

комплексный набор для обогащения кормов для всех видов животных:

8 аминокислот, 15 витаминов, в т.ч. холин ферменты, премиксы и бленды, консерванты AIV и подкислители ароматизаторы, энергорегуляторы, и др.

Распределение затрат в себестоимости продуктов птицеводства

- Кормление до 70%
- Птица до 15%
- Ветеринария до 3,5%
- Энергоносители до 5%
- Общехозяйственные расходы до 8%

Основные задачи кормления

- 1. Рациональное использование питательных веществ корма (экономия), в том числе путём повышения усвояемости питательных веществ сырья (ингредиентный состав, вспомогательные добавки)
- 2. Снижение затрат
- з. Безопасность получаемой продукции
- 4. Экологический аспект

На решение этих задач направлена работа специалиста Рецептолога - через оптимизацию рационов в программе кормления птицы

Рост и развитие организма молодняка яичной птицы

<u>1-е 3 недели жизни цыплят</u>:

Интенсивно растут и развиваются внутренние органы, увеличиваясь:

- печень и сердце в 9 раз,
- селезенка в 18 раз,
- желудок в 5 –6 раз,
- кишечник в 7 раз.

костяк сформирован к 5-6 нед. - на 70 % ,

к 12 нед. - на 95 %

Предстартовый корм

В этот период необходимо обеспечить организм цыплят источниками

легкоусвояемых питательных веществ:

- протеинов (= аминокислоты),
- энергии,
- Витаминов и минеральных веществ,
- При этом корма должны быть максимально безопасными!!
 (токсины, ксенобиотики, антипитательные факторы, нежелательные микроорганизмы и др.)

Сырой протеин

(protos греч.- первый)

«В кормлении животных под Сырым Протеином понимают все <u>азот</u>содержащие вещества корма: белки и амиды.

Белки - высокомолекулярные органические соединения, построенные из аминокислот.

Амиды - азотистые соединения небелкового характера. В отличие от других органических веществ протеин содержит азот. Среднее содержание азота в протеине - 16 %».

Аминокислоты организма

заменимые	незаменимые
аланин,	лизин,
аспарагиновая и	Метионин+цистин,
глютаминовая кислоты,	треонин,
глицин,	триптофан,
оксипролин,	аргинин,
пролин,	Валин
цистин,	лейцин,
тирозин,	изолейцин,
серил	фенилаланин,
	гистидин,
	Лимитирующие для птицы

Основные функции АК в организме

аминокислота	Значение в обмене веществ организма
лизин	необходим животным для синтеза тканевых белков, регулирует воспроизводительную функцию, регулирует количество продуктов распада белка в тканях и органах, способствует всасыванию кальция, участвует в функциональной деятельности нервной и эндокринной систем, регулирует обмен белков и углеводов и мн. др.
аргинин	является катализатором синтеза мочевины в почках, креатина белка мышц, фермента поджелудочной железы инсулина, участвует в образовании спермы, регуляторная молекула метаболических путей, предшественник NO и мн.др.
Фенилаланин, тирозин и триптофан	активность ферментов пищеварительного тракта, окислительных ферментов в клетках и ряда гормонов. Триптофан – обновлении белков плазмы крови. Тирозин – для синтеза гормонов щитовидной железы (тироксина) и надпочечников (адреналина) и мн.др.
метионин, цистин и цистеин	необходимы для роста и размножения клеток, в т.ч. Эритроцитов, регулируют жировой метаболизм, участвуют в образовании пера; Цистин активирует инсулин, вместе с триптофаном участвует в синтезе желчных кислот, <i>и мн. др.</i>
	И многие другие функции в жизни организма

Разветвленно-цепочечные АК лейцин, изолейцин, валин — необходимы для иммунитета

- Все РЦАК необходимы **лимфоцитам всех типов** для синтеза собственного протеина, РНК и ДНК. ИЗОЛЕЙЦИН — в большей степени.
- Эозинофилы и нейтрофилы следующие «потребители» ИЗОЛЕЙЦИНА
- при активизации защитной функции организма в протеинах иммунных клеток увеличивается уровень ЛЕЙЦИНА.
- В-лимфоциты содержат РЦАК:

 ЛЕЙЦИН, ИЗОЛЕЙЦИН, ВАЛИН (по убывающей)

Особенность РЦАК

Feed additives - amino acids and more | Anton Klimenko | Moscow, 27.04.2016 Page 20

Изолейцин, Валин и Лейцин - конкурирующие аминокислоты:

- Самой активной является Лейцин,
 При избытке его запускается механизм активации фермента распада РЦАК (трансаминаза аминокислот с разветвленными цепями)
- Изолейцин является первой лимитирующей аминокислотой среди разветвленно-цепочечных ввиду небольшого содержания в сырье
- Валин занимает промежуточное положение среди РЦАК и в некоторых исследованиях отмечается снижение негативного влияния избытка Лейцина при увеличении уровня Валина

L-Аргинин способствует высвобождению NO в организме

• Аргинин – не только «строительный материал» протеинов, но и регуляторная молекула метаболических путей:

L-Аргинин - предшественник оксида азота (NO – ключевая сигнальная молекула в организме)

- Функции NO оксида азота:
 - ✓ В эндотелии: вазодилатация (расслабление гладких мышц стенок сосудов, что приводит к расширению сосуда и увеличению кровотока)
 - ✓ В лимфоцитах: элиминация бактерий и паразитов (может проявляться цитотоксическая, бактерицидная, противогрибковая и антипротозойная активность)

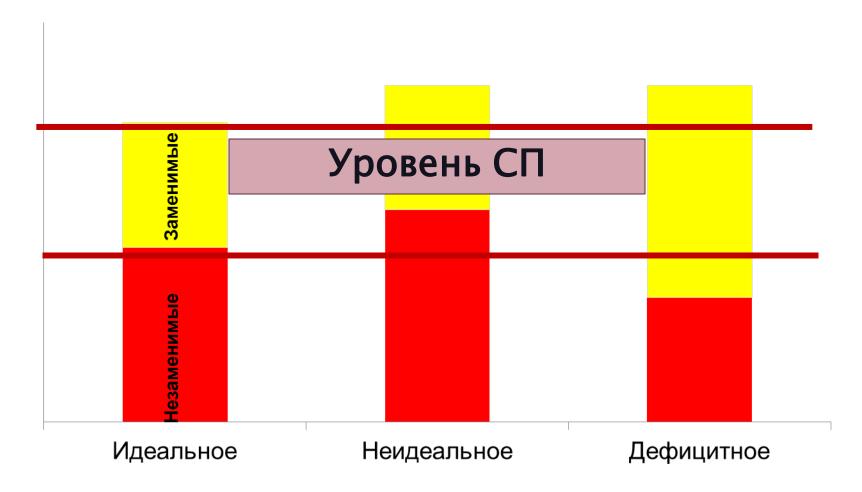
Основные функции протеина

- Строительная синтез белков всех тканей организма,
- **БИОЛОГИЧЕСКАЯ (РЕГУЛЯТОРНАЯ)** ферменты процессов синтеза и распада на клеточном уровне; гормоны, составные части иммунных тел, антибиотиков.
- Энергетическая (не основная)

Дефицит протеина

	оне на сод	ержание ж	Ma B
Содержание протеина в рационе, %	Яйценоскость, %	Потребление корма, г/гол./сут.	Содержание
13	76,4		жира в печени, %*
15	77,0	108	49,3
17	78,0	107	40,2
		107	38,2

Почему возникает дефицит аминокислот при «нормальном» уровне протеина в рационе?


из-за разницы между <u>составом аминокислот ПРОТЕИНА КОРМОВ</u> и <u>потребностями</u> в аминокислотах ОРГАНИЗМА животных

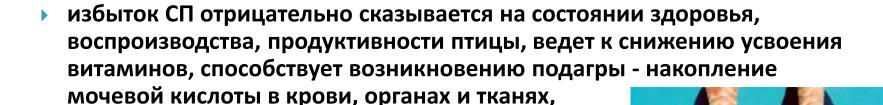
> Потребность в белках фактически является потребностью <u>в аминокислотах</u>

Определяющее влияние на синтез белка в организме птицы оказывают уровень и соотношение незаменимых аминокислот

Схема соотношения незаменимых и заменимых аминокислот в рационе и уровень сырого протеина

В условиях иммунной супрессии и стресса:

- ▶ 1. Глутамин, Аргинин, Цистин становятся потенциально лимитирующими аминокислотами. Потребность их в условиях стресса/иммунной супрессии увеличивается в 2 – 3 раза (Wilmore, Shabert, 1998; Pond, Newsholme, 1999)
- 2. Уровень Метионина, Треонина, Триптофана необходимо увеличить на 10%.


Глутамин, Аргинин, Треонин, Метионин+Цистин, Лейцин, Изолейцин, Валин, Триптофан находятся в мукозе слизистых оболочек. Некоторые из этих АК являются составляющей частью мукозы, а некоторые входят в состав иммунных белков, находящихся в мукозе и в клетках кишечника. Уровень Триптофана можно увеличить до значений в 2 раза выше рекомендуемых.

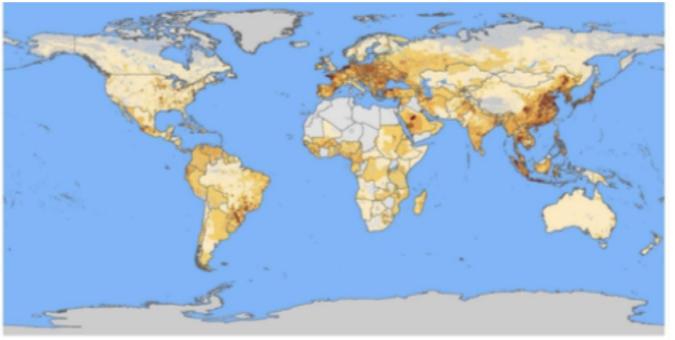
- з. В условиях стресса/иммунного ответа соблюдение оптимального соотношения Лейцина к Лизину становится очень критичным.
- Наиболее чувствителен к дефициту указанных аминокислот при различных стрессах молодняк.

Чем плох высокий уровень СП в рационе?

не оправдан экономически

возможен избыток нитратов, нитритов, входящих в состав амидов.

выделение азота во внешнюю среду



Птицеводство в мире (статистика)

Плотность птицеводства в мире по данным статистики (2005)

ДЕПАРТАМЕНТ СЕЛЬСКОГО ХОЗЯЙСТВА И ЗАЩИТЫ ПРАВ ПОТРЕБИТЕЛЯ **Отдел по защите продуктивности и здоровья животных**

Увеличение численности животных

Увеличение размеров ферм

Продуктивность зависит от импорта протеина (SBM – соевый шрот)

Источник: Gridded Livestock of the World

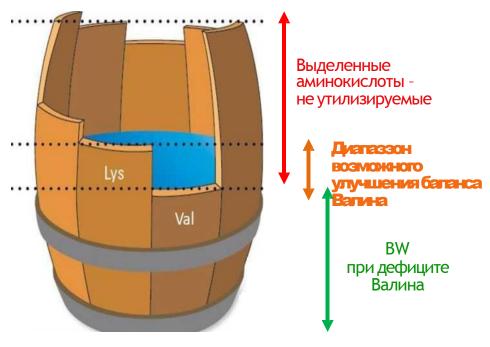
Импорт соевых бобов и соевого шрота (2017)

- Основные импортеры: США, Аргентина, Бразилия
- _ Эквивалентно:
 - <u>5.3 млн тонн азота</u>для Китая
 - **2.2 млн тонн азота для** для EC-27

From: www.indexmundi.com

Выращивание сельхозживотных и экология:

Выделение азота в окружающую среду в Германии


(Федеральное Агентство по Защите Окружающей Среды Federal Environment Agency 2017)

NH_3 (килотонн/год) **NEC-National Emission** 683 683 692 **Ceilings Directive** 2001/81/EU Директива ЕС по максимальным допустимым выбросам загрязняющих веществ в окружающую среду Общий Сельское хозяйство

Как можно повысить эффективность усвоения азота?

Стратегии по снижению содержания сырого протеина в рационе с сохранением продуктивности:

- 1) Балансирование протеина (по 1^й лимитирующей аминокислоте) минимизирует излишек протеина в рационе
- а. Рассчитанные рационы
- 2) Улучшение баланса аминокислот в протеине корма:
- а. Концепция идеального протеина
- b. Добавки кристаллических аминокислот: L-Лизин, L-Треонин, Метионин, L-Триптофан, L-Валин, L-Изолейцин и др.

Собственные расчеты по данным AminoDat® & NRC2012

Показатели стандартных образцов кормового сырья (содержание аминокислот в сыром протеине):

Содержание валина (%) и соотношения Валин:Лейцин:Лизин

	Содержание аминокислот в СП (%)							
Злаки	Валин	Лизин	Лейцин	Валин:Лейци н: Лизин	Валин:Лей цин(100)		Ізбыток Лейцина цин(100): Лизин(100)	
Ячмень	4.83	3.44	6.62	140:192:100	73		+92	
Кукуруза	4.64	2.96	11.48	157:388:100	40		+288	
Кукуруза (США)	4.63	2.96	11.44	156:386:100	40		+286	
Пшеница	4.17	2.68	6.46	156:241:100	65		+ 141	
Пшеница (Германия)	4.14	2.66	6.46	156:243:100	64	+ 143		
Масличные культуры	Валин	Лизин	Лейцин	Валин:Лейци н: Лизин	Валин:Ле н (100)	йци	Избыток Лейцина Лейцин(100):Лизи н(100)	
Рапсовый шрот	5.12	5.32	6.83	96:128:100	75		+28	
Подсолнечный шрот (Германия)	5.03	3.46	6.18	145:179:100	81		+79	
Соевый шрот	4.73	6.00	7.52	79:125:100	63		+25	
Соевый шрот (48%)	4.73	5.99	7.50	79:125:100	63		+25	

L-Валин - свойства

- Валин аминокислота с разветвленной цепью (АКРЦ)
 - Незаменим для синтеза более 30% мышечных белков
 - АКРЦ не фильтруются в печени, они метаболизируются в мышцах
 - Общие метаболические пути с изолейцином и лейцином
- Дефицит Валина в рационе может возникать при:
 - Высоких уровнях лизина
 - Некорректный баланс протеина
 - Отсутствии животного протеина
 - В этом случае:

Становится 4-й лимитирующей аминокислотой для птицы (после треонина)

(для свиней -5-я лимитирующая аминокислота, после триптофана)

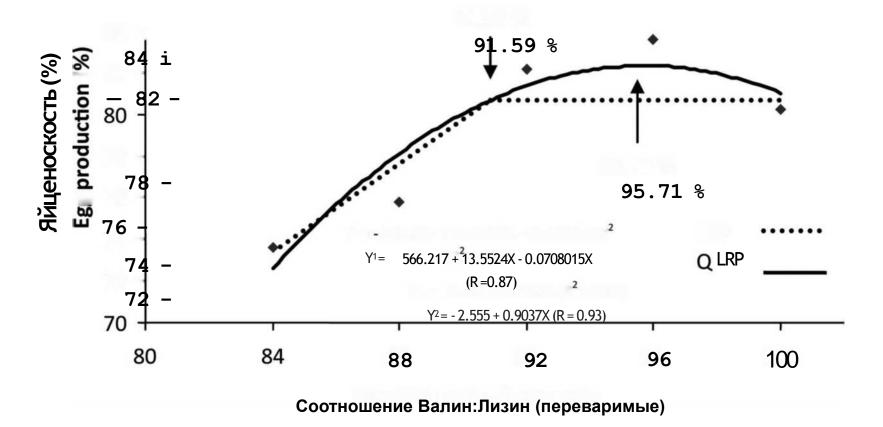
- Куры-несушки-

Обзор литературы: аминокислотные профили для кур-несушек

Публикация	N	/ let	Met+ Cys	Thr	Trp	Arg	lle	Val
NRC 1994	0	43	84	68	23	101	94	101
Jais et al. 1995	П	44	-	74	16	82	76	64
Coon &Zhang 1999	П	49	81	73	20	130	86	102
GFE 1999	0	50	87	72	23	91	91	100
Leeson & Summers 2005	0	51	88	80	21	103	79	89
Rostagno 2005	П	50	91	66	23	100	83	90
Bregendahl et al 2008	П	47	94	77	22	1	79	93
Lemme 2009	П	50	91	70	21	104	80	88
Lelis et al. 2014	П	-	93	78	23	-	83	92
Среднее	П	0 - общий, П - переваримый * - значение без Jais et al. 1995					81(82*)	88(93*)

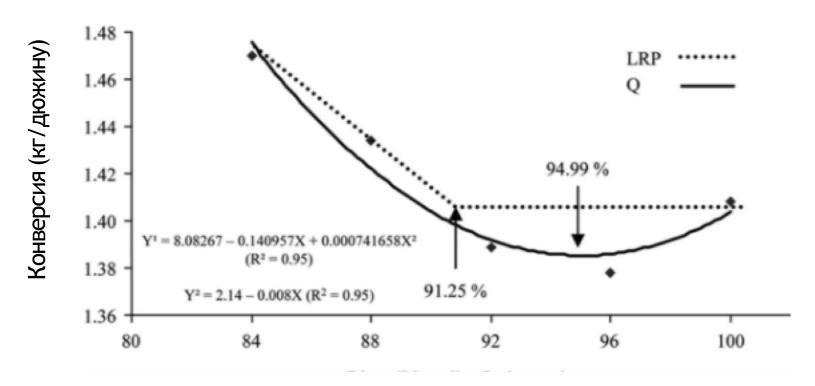
- 270 кур-несушек кросса ДЕКАЛБ коричневый, возраст 42-54 недели
- 5 вариантов рациона, 9 повторов по 6 птиц в каждом
- Отношение Валин:Лизин (измеренное): 84 (0.555 % dig. Val), 88, 92, 96, 100
- Рационы на кукурузе 70% и соевом шроте
- В процессе выращивания до 42 недель несушки получали рацион согласно рекомендациям для данного кросса

<u> </u>						
	Соотношение Валин.Лизин (переваримые в рационе, %)					
	84	88	92	96	100	
Компоненты, (%)						
Кукуруза	69.741	69.741	69.741	69.741	69.741	
Соевый шрот	8.000	8.000	8.000	8.000	8.000	
Мясокостная мукаl 45%	4.000	4.000	4.000	4.000	4.000	
Рыбная мука 45%	2.000	2.000	2.000	2.000	2.000	
Глютен кукур.	3.000	3.000	3.000	3.000	3.000	
Плазма крови	1.000	1.000	1.000	1.000	1,000	
Масло соевое	1.000	1.000	1.000	1.000	1,000	
Клетчатка	0.761	0.735	0.708	0.681	0.654	
Лизин HCl 79%	0.149	0.149	0.149	0.149	0.149	
DL-Метионин 99%	0.220	0.220	0,220	0.220	0,220	
L-Аргинин 98 . 5%	0.100	0.100	0.100	0.100	0.100	
L-Треонин 98%	0.080	0.080	0.080	0.080	0.080	
L-Триптофан 98%	0.040	0.040	0.040	0.040	0.040	
L-Валин 98.5%	0.003	0.030	0.057	0.084	0.110	
L-Изолейцин 98.5%	0.115	0.115	0.115	0.115	0.115	
Известняк	8.800	8.800	8.800	8.800	8.800	
Фосфат кальция	0.120	0.120	0.120	0.120	0.120	
Соль	0.300	0.300	0.300	0,300	0.300	
Карбонат кальция	0.360	0.360	0.360	0.360	0.360	
Витаминно-минер. Премикс	0.160	0.160	0.160	0,160	0.160	
Холин хлорид 60%	0.040	0.040	0.040	0.040	0.040	
BHT ³	0.010	0.010	0.010	0.010	0.010	
Общее		100. 00	100.00	100,0	100.00	



Расчетная питательность экспериментальных рационов

Расчетные показатели	Валин:Лизин (%)					
питательности (%)	84	88	92	96	100	
ОЕ (ккал/кг)	2,950	2,950	2,950	2,950	2,950	
Сырой протеин	14.812	14.812	14.812	14.812	14.812	
Кальций	3.951	3.951	3.951	3.951	3.951	
Доступный фосфор	0.353	0.353	0.353	0.353	0.353	
Калий	0.207	0.207	0.207	0.207	0.207	
Натрий	0.584	0.584	0.584	0.584	0.584	
Лизин П	0.660	0.660	0.660	0.660	0.660	
Треонин П	0.515	0.515	0.515	0.515	0.515	
Метионин+Цистин П	0.620	0.620	0.620	0.620	0.620	
Триптофан П	0.152	0.152	0.152	0.152	0.152	
Изолейцин П	0.548	0.548	0.548	0.548	0.548	
Валин П	0.555	0.581	0.607	0.634	0.660	
Общий валин	0.634	0.664	0.690	0.717	0.742	
Общий валин (измеренный)	0.623	0.660	0.693	0.712	0.750	



Влияние различных соотношений Валин:Лизин на яйценоскость (%). Q = квадратичное отклонение; LRP = область линейной зависимости функции.

Влияние различных соотношений Валин:Лизин на конверсию корма (кг/дюжину). Q = квадратичное отклонение ; LRP = область линейной зависимости функции.

• Соотношение Валин:Лизин (переваримые) не оказывает влияния на содержание желтка, альбумина и качество скорлупы (Р > 0.05)

Резюме

- Добавление синтетических аминокислот в состав комбикорма позволяет лучше откорректировать его отдельные недостатки, в том числе уменьшить содержание излишка белка, что благоприятно для экологии, поскольку снижается содержание азота в помёте.
- Оптимальное рекомендованное соотношение Валин : Лизин для несушек составляет 88 92%.
- Применяемые для комбикорма спецификации состава следует соотносить с экономическими условиями. Но, хотя само содержание аминокислот (г/кг комбикорма) может быть различным в зависимости от экономических условий, их соотношение должно сохраняться постоянным!

Из «РУКОВОДСТВА ПО РАБОТЕ С АУТОСЕКСНЫМИ КРОССАМИ ДЕКАЛБ УАЙТ И ХАЙСЕКС БРАУН»

«... Лимитирующий фактор: опыт последних десятилетий, приобретённый в кормлении птицы, особенно в использовании синтетического лизина, позволяет нам утверждать, что ИЗОЛЕЙЦИН и ВАЛИН стали лимитирующими факторами в кормах для несушек при исключении продуктов животного происхождения или когда они используются в рационах на основе пшеницы».

тому, что одна и. Это приводит к увеличению страховочного запаса, чтобы в полной мере переваримости. Это приводит к увеличению страховочного запаса, чтобы в полной мере гарантировать удовлетворение потребности птицы.

гарантироватом протеине: когда состав корма учитывает потребность в каждой из 7 Потребность в протеина иминокислот, нет необходимости вводить минимальное незаменимых лимитирующих аминокислот, нет необходимости вводить минимальное незамение содержания протеина. С другой стороны, если при составлении рецепта не призначение содержания протеина аминокислоты, то необходимо использовать величину нимались в расчет все необходимые аминокислоты, то необходимо использовать величину минимального содержания протеина, таким образом, снижая риск дефицита.

минимального минимального происхождения или когда они используются в рационах на основе пшеницы.

ТРИПТОФАН - это лимитирующий фактор в рационах на основе кукурузы, соевой муки и продуктов животного происхождения.

ТРЕОНИН и АРГИНИН не являются лимитирующими факторами в современных рационах. Их влияние требует дальнейшего изучения.

Когда потребности в ИЗОЛЕЙЦИНЕ, ВАЛИНЕ И ТРИПТОФАНЕ удовлетворены, потребности в других незаменимых и заменимых аминокислотах всегда удовлетворяется при введении 300 мг протеина на грамм яйца. Когда в рационе удовлетворяется потребность в ИЗОЛЕЙЦИНЕ и ВАЛИНЕ, то нет необходимости учитывать минимальный уровень протеина.

РЕКОМЕНДАЦИИ ПО АМИНОКИСЛОТАМ ДЛЯ НЕСУШЕК РОДИТЕЛЬСКОГО СТАДА

Суточная потребность в аминокислотах в период продуктивности зависит от уровня яйцекладки и привесов. Эти требования для прародительского и родительского стада не отличаются от промышленного стада. Во избежании любой нехватки, был заложен гарантийных запас (6%).

Составляя рацион для несушек можно использовать константу содержания ИЗОЛЕЙЦИНА и ВАЛИНА, вместо определенного уровня протеина. Если это невозможно, то ниже мы приводим ориентиры по минимуму протеина в корме, содержащем и не содержащем мясокостили милим.

Спрактической точки зрения, мы рекомендуем увеличить содержание аминокислот в корме, приблизительно, на 6% в период 18 – 28 недель в зависимости от потребления корма. Общие и усваиваемые аминокислоты даны в расчете на производство 59,9 г яйцемассыв сутки.

<u>ИЗ «РУКОВОДСТВА ПО РАБОТЕ С АУТОСЕКСНЫМИ КРОССАМИ ДЕКАЛБ</u> <u>УАЙТ И ХАЙСЕКС БРАУН», стр. 43:</u>

«... когда состав корма учитывает потребность в каждой из 7 незаменимых лимитирующих аминокислот, нет необходимости вводить минимальное значение содержания протеина. С другой стороны, если при составлении рецепта не принимались в расчёт все необходимые аминокислоты, то необходимо использовать величину минимального содержания протеина, таким образом снижая риск дефицита».

ИЗОЛЕЙЦИН и ВАЛИН для несушек

«Составляя рацион для несушек, можно использовать константу содержания ИЗОЛЕЙЦИНА и ВАЛИНА вместо определённого уровня протеина».

«...Когда в рационе удовлетворяется потребность в ИЗОЛЕЙЦИНЕ и ВАЛИНЕ, то нет необходимости учитывать минимальный уровень протеина».

При этом обязательно учитывая <u>соотношение</u> усваиваемых аминокислот!!!

Синтетические кормовые аминокислоты

На сегодняшний день мировая промышленность предлагает **8 синтетических кормовых аминокислот**:

- Лизин (моногидрохлорид и сульфат)
- ▶ Метионин (DL-метионин, L-метионин, MNA)
- ▶ L-Треонин
- L-Триптофан
- ▶ L-Аргинин
- L-Валин
- L-Изолейцин
- Глицин

компания «Кормовит» поставляет на кормовой рынок РОССИИ и ТС все 8 аминокислот и предлагает поставки своим партнёрам!!!

Аминокислоты, витамины, премиксы, белковые концентраты, адсорбенты, подкислители, ферменты, красители, и др. кормовые добавки

ПРИГЛАШАЕМ К СОТРУДНИЧЕСТВУ!!!

БЛАГОДАРЮ ЗА ВНИМАНИЕ!

